Note Booklet #4: Energy

Work

In physics work means that force is applied to an object and that object moves.

Work =

The unit for work is

Work is always done from one thing to another thing.

Example: A person pushes a block 25m across a floor with an applied force of 45N.

Example: A person pushes a block 15m across a floor with an applied force of 62N.

Example: A person pushes a block 15m across a floor with an applied force of 46N while friction pushes against the motion with a force of 25N.

Example: A person pushes a block 45m across a floor at a constant velocity with an applied force of 56N.

Example: A person pushes on a wall with a force of 26 N for 2.5 seconds but the wall does not move.

Example: A puck slides 26m over a frictionless surface at a constant velocity of 2.9 m/s.

Example: A 26 kg block is lifted by a person at a constant velocity to a height of 3.0m.

Example: A 6.2 kg block is lifted by a person at a constant velocity to a height of 91.2m.

What Work Does

Consider a block which is pushed 10.0 m by a force of 25N.

Situation 1: The block was pushed over a frictionless surface.

Situation 2: The block was pushed up a frictionless ramp at a constant velocity.

Situation 3: The block was pushed over a surface where friction equals the applied force.

Potential Energy

Potential energy is energy that is _____

For example:

The type of potential energy we will most focus on is ______

This is the energy which is stored due to ______ above a reference point.

Gravitational potential energy =

Example: A 2.0 kg object sitting on a table 1.0 m above the floor is lifted 0.5 m. How much gravitational potential energy does it have

a)) With	respect	to the	table
----	--------	---------	--------	-------

b) With respect to the floor

Example: What is ΔE_p when a 50 kg object is dropped from a height of 20m to 10m?

Practice:

1. How much gravitational potential energy does a 1500 kg car have if a hoist lifts it up to a height of 2.0 m above the floor?

2. A book of mass 1.2 kg drops from a height of 2.6 m to a height of 0.4 m. What is the value of Δ Ep?

3. It takes 90J of work to lift an object to a height of 1.2m. What is the mass of the object?

Kinetic Energy

Kinetic Energy is the energy of ______. The faster an object is moving the more energy it has.

Kinetic energy =

Note that energy is not a vector, it does not matter what direction the object is moving.

Example: A 2.0 kg object is moving at 25 m/s. How much kinetic energy does it have?

Example: What is the mass of an object if it has 250 J of kinetic energy and is moving at 5.0m/s?

Example: What is the velocity of an object if it has 5600 J of kinetic energy and has a mass of 29kg?

Practice:

1. A 14 object is moving at 276 m/s. How much kinetic energy does it have?

2. What is the velocity of an object if it has 840 J of kinetic energy and has a mass of 29kg?

3. What is the mass of an object if it has 195 J of kinetic energy and is moving at 2.5m/s?

Conservation of Energy

A fundamental low of the universe is the law of conservation of energy:

Give an example of a technology which transforms energy from:

Electrical energy into kinetic energy:

Electrical energy into light energy:

Chemical energy into kinetic energy:

Chemical energy into electrical energy:

Example: A 20.0 kg rock is dropped from a height of 5.0m. It hits the ground at 8.5 m/s. How much heat energy was generated?

Thermal Energy

Thermal energy is the ______ of the molecules and atoms in a substance.

As a substance "heats up" the molecules and atoms that make up the substance move and vibrate more, thus increasing their kinetic energy.

Temperature is the ______ kinetic energy of a substance.

Thermal energy, like all energy is measured in ______

Temperature is measured in degrees Fahrenheit or Celsius or in Kelvin.

Kelvin is based on absolute zero which is the lowest possible temperature, at OK there is

0 К = _____°С

Specific Heat Capacity

The amount of energy needed to raise the temperature of a substance depends on the chemical structure of that substance. For instance, if you applied 5000 J of heat energy to 1kg of water, copper iron or concrete.

The ability to absorb heat energy is a property of matter called ______

The symbol for it is _____.

The table to the right shows specific heat capacities for several substances. For copper c = $430 \frac{J}{kg \cdot c}$. This means

	Specific Heat
	Capacity
Material	<u>(J/(kg C))</u>
Water Ice Alcohol Concrete Aluminum Copper Iron Steel	4200 2040 2380 880 900 430 450 480
Lead	130

The formula for solving problems with specific heat capacity is

$$\Delta E_{h} = \qquad \qquad \text{where } \Delta E_{h} = \\ m = \\ c = \\ \Delta T = \end{cases}$$

EXAMPLE: How much energy is needed to heat 2.5 kg of copper from 19° C to its melting point of $1085^{\circ}C$?

EXAMPLE: How much would the temperature of a 2.0 kg block of aluminum change if 3500 J of energy is applied to it.

EXAMPLE: What is the heat capacity of zinc if a 1.41 kg sample required 3.82×10^3 J of energy to raise its temperature from 20.0°C to 26.0°C

<u>Power</u>

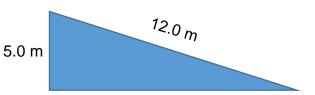
Power is

If two machines do the same amount of work but one machine finishes the job faster, then the faster machine is more powerful. Mathematically speaking,

Another useful formula:

<u>Units</u>

An alternative unit of power is "horsepower" (hp). The conversion factor between watts and horsepower is


EXAMPLE: A car's engine outputs 1 200 000 J of energy in 5.0 seconds. What is the power of the engine in watts and in horsepower?

EXAMPLE: A 1600 W hairdryer is used for 35 seconds. How much energy does it use in that time?

EXAMPLE: How long does it take a 6 hp engine to use 1 000 000 J of energy?

EXAMPLE: A student runs up the ramp shown.

Their power output is 2300 W. How long will it take them to run up the ramp?

EXAMPLE: A motor has a maximum power output of 4.9 watts. What is the maximum mass it can lift at 3.0 m/s? What about at 0.5 m/s?

EXAMPLE: A 70.0 kg runner increases their speed from rest to 10.0 m/s in 4.0 seconds. What is their power output?

Efficiency

A machine converts one type of ______ into _____.

For example:

No machine is 100% efficient, that is ______ < ______

The "lost" energy is generally converted into ______.

Efficiency is a measure of what percentage of the input energy is transformed into the output or what percentage of the input power is transformed into output power.

EXAMPLE: A 2600 W motor outputs 2300 W of power. What is the efficiency of the motor?

EXAMPLE: A lever is used to lift a 50.0 kg object 10.0 cm. To do this we must apply a force of 75 N to the end of the lever which displaces 1.00 m. Find the efficiency of the lever.

EXAMPLE: How much work can a 22 kW electric car engine do in 60 seconds if it is 75 % efficient?

EXAMPLE: A 12 kW machine pulls a 680 kg block across a surface with $\mu = 0.44$ at 2.5m/s. What is the efficiency of the machine?